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We prove that in a Banach space X with rotund dual Xn a Chebyshev set C is

convex iff the distance function dC is regular on X =C iff dC admits the strict and

G#aateaux derivatives on X =C which are determined by the subdifferential @jjx � %xxjj
for each x 2 X =C and %xx 2 PCðxÞ :¼ fc 2 C : jjx � cjj ¼ dCðxÞg: If X is a reflexive

Banach space with smooth and Kadec norm then C is convex iff it is weakly closed iff

PC is continuous. If the norms of X and Xn are Fr!eechet differentiable then C is

convex iff dC is Fr!eechet differentiable on X =C: If also X has a uniformly G#aateaux

differentiable norm then C is convex iff the G#aateaux (Fr!eechet) subdifferential @�dC

ðxÞ (@F dCðxÞ) is nonempty on X =C: # 2002 Elsevier Science (USA)
1. INTRODUCTION

Let X be a real normed linear space and X n be its dual space. For a
nonempty closed subset C in X ; the distance function associated with C is
defined as

dCðxÞ ¼ inffjjx � cjj : c 2 Cg 8x 2 X

and a minimizing sequence for x 2 X is a sequence fxngDC satisfying
jjxn � xjj ! dCðxÞ as n ! þ1: The metric projection is given by

PCðxÞ ¼ fc 2 C : jjx � cjj ¼ dCðxÞg;

which consists of the closest points in C to x 2 X : PC is said to be
continuous at x 2 X if PCðxÞ is a singleton and yn ! y 2 PCðxÞ whenever
yn 2 PCðxnÞ and xn ! x as n ! þ1:

A nonempty subset C of X is said to be a Chebyshev set if each point in X

has a unique closest point in C: (This concept was introduced by S. B.
Stechkin in honour of the founder of best approximation theory, P. L.
Chebyshev.) For example every nonempty closed convex set in a Hilbert
181
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space is a Chebyshev set. A Chebyshev set is necessarily closed. It is a well-
known problem whether a Chebyshev set in a Hilbert space must be convex.
In a finite-dimensional Hilbert space Bunt [10], Kritikos [24], and Jessen [21]
proved that every Chebyshev set is convex. However, in an infinite-
dimensional Hilbert space this problem is still open (see [1, 4, 15, 22]).

In a smooth space setting, many sufficient conditions for a Chebyshev set
to be convex have also been obtained. Busemann [12] pointed out that every
Chebyshev set in a smooth, strictly convex, and finite-dimensional space is
convex. Klee [23] showed that in a finite-dimensional smooth normed linear
space a Chebyshev set is convex. Efimov and Stechkin [17] proved that every
weakly closed Chebyshev set in a smooth and uniformly rotund Banach
space is convex (whose version in a Hilbert space is related to the work
of Asplund [1] and Klee [23]) while Vlasov [25, 29] showed that every
boundedly compact Chebyshev set in a smooth Banach space is convex.
Vlasov also proved that in a Banach space which is uniformly smooth in
each direction each approximately compact Chebyshev set is convex [26],
and that in a strongly smooth space or in a Banach space X with rotund
dual X n every Chebyshev set with continuous metric projection is convex
(see [27, 28, Theorem 3]). Further, Vlasov [29] gave the following sufficient
condition for a Chebyshev set to be convex:

Theorem 1.1. In a Banach space X with rotund dual X n; a nonempty

closed set C is convex if its distance function dC satisfies

DþdCðxÞ :¼ lim sup
jjyjj!0

dCðx þ yÞ � dCðxÞ
jjyjj ¼ 1

for all x 2 X =C: (see also [4, Proposition 2.1] or [5, Theorem 14]).

Balaganskii [2] indicated that in a strongly convex space X with Fr!eechet
differentiable norm, if C is a Chebyshev set and A is the set of points x 2 X

such that the relations cn 2 C and dðcn; xÞ ! dCðxÞ imply the existence of a
convergent subsequence cnk

and that the cardinality of the complement Ac is
less than the cardinality of continuum, then C is convex. For more results in
a smooth space see the excellent survey paper of Balaganskii and Vlasov [4]
and the references therein.

Outside the smooth space setting, Br�ndsted [7, 8] constructed, for each
n53; a nonsmooth n-dimensional normed linear space in which every
Chebyshev set is convex. He also proved that for each n43 every Chebyshev
set in an n-dimensional normed linear space is convex if and only if each
exposed point of the unit sphere is a smooth point. This was extended by
Brown [9] in a four-dimensional normed linear space. In an almost smooth
Banach space which generalizes smooth Banach spaces and nonsmooth
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Banach spaces such as those Br�ndsted constructed, Kanellopoulos has
proved that every weakly compact Chebyshev set is convex [22].

It is worth noting that some of the above sufficient conditions for a
Chebyshev set to be convex are also necessary. In the survey paper of
Deutsch [15] we can see both a brief historical account of the convexity of a
Chebyshev set and also interesting characterizations of a convex Chebyshev
set in a Hilbert space. We prove in this paper that the sufficient condition in
Theorem 1.1 is in fact necessary for a Chebyshev set to be convex. We also
present many equivalent conditions in terms of various derivatives and
subdifferentials often used in nonsmooth analysis. As a result, in a reflexive
Banach space with smooth and Kadec norm, a Chebyshev set C is convex if
and only if it is weakly closed.

For convenience we briefly review the following notions in nonsmooth
analysis. Let x 2 X be fixed. For any v 2 X ; the Clarke generalized

directional derivative of dC at x in the direction v is

dC8ðx; vÞ :¼ lim sup
y!x
t!0þ

dCðy þ tvÞ � dCðyÞ
t

and the Clarke subdifferential of dC at x is

@dCðxÞ :¼ fx 2 Xn : hx; vi4dC8ðx; vÞ 8v 2 Xg:

The Michel–Penot generalized directional derivative of dC at x in the
direction v is

d}
C ðx; vÞ :¼ sup

u2X

lim sup
t!0þ

dCðx þ tu þ tvÞ � dCðx þ tuÞ
t

and the Michel–Penot generalized subdifferential of dC at x is

@}dCðxÞ :¼ fx 2 X n : hx; vi4d}
C ðx; vÞ 8v 2 Xg:

Similarly, the lower Dini derivative of dC at x in the direction v is

d�
C ðx; vÞ :¼ lim inf

t#0

dCðx þ tvÞ � dCðxÞ
t

and the G #aateaux subdifferential of dC at x is the set

@�dCðxÞ :¼ fx 2 X n : hx; vi4d�
C ðx; vÞ 8v 2 Xg:
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The Fr!eechet subdifferential of dC at x is the set

@F dCðxÞ :¼ x 2 Xn : lim inf
y!x

dCðyÞ � dCðxÞ � hx; y � xi
jjy � xjj 50

� �
:

The proximal subdifferential of dC at x 2 X is the set

@PdCðxÞ :¼ fx 2 Xn : 9M > 0; d > 0 s:t:

dCðyÞ � dCðxÞ þ Mjjy � xjj25hx; y � xi 8y 2 x þ dBg:

The upper Dini derivative of dC at x in the direction v is

dþ
C ðx; vÞ :¼ lim sup

t#0

dCðx þ tvÞ � dCðxÞ
t

and the usual directional derivative of dC at x in the direction v is

d 0
Cðx; vÞ :¼ lim

t#0

dCðx þ tvÞ � dCðxÞ
t

:

The G #aateaux directional derivative of dC at x in the direction v is

DdCðx; vÞ :¼ lim
t!0

dCðx þ tvÞ � dCðxÞ
t

:

The distance function dC is said to be strictly differentiable at x if there
exists x 2 Xn such that

lim
y!x
t!0þ

dCðy þ tvÞ � dCðyÞ
t

¼ hx; vi

for each v 2 X and the convergence is uniform for v in compact sets. We say
that dC is regular at x if d 0

Cðx; vÞ exists and equals dC8ðx; vÞ for every v 2 X :
dC is said to be G #aateaux differentiable at x 2 X if there exists x 2 Xn such
that d 0

Cðx; vÞ ¼ hx; vi for each v 2 X and the convergence in the definition of
d 0

Cðx; vÞ is uniform with respect to v in finite sets. If the word ‘‘finite’’ in the
preceding sentence is replaced with ‘‘bounded’’, then dC is said to be Fr!eechet

differentiable at x:

2. EQUIVALENT CONDITIONS WITH DERIVATIVES OF dC

To establish our result we need the following two lemmas which
characterize the strict and G#aateaux differentiabilities of the distance function
on a smooth space.
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Lemma 2.1. Suppose that the norm on a normed linear space X is smooth.

Let C be a nonempty closed subset of X and let x 2 X =C and %xx 2 PCðxÞ: Then

the following are equivalent:

(i) dC is strictly differentiable at x.

(ii) @dCðxÞ ¼ @jjx � %xxjj:

Proof. Let dC be strictly differentiable at x: Then @dCðxÞ is a singleton.
Since X is smooth and xa %xx; @jjx � %xxjj is also a singleton. To prove
the implication ðiÞ ) ðiiÞ it suffices to show that @dCðxÞ \ @jjx � %xxjj is
nonempty. Now by Borwein et al. [5, Theorem 5] there exists x 2 @}dCðxÞ
such that x 2 @jjx � %xxjj; that is, @}dCðxÞ \ @jjx � %xxjj is nonempty, which
in turn implies that @dCðxÞ \ @jjx � %xxjj is nonempty since @}dCðxÞD
@dCðxÞ:

Conversely, if @dCðxÞ ¼ @jjx � %xxjj; then @dCðxÞ is a singleton since
@jjx � %xxjj is. Therefore, by Clarke [13, Proposition 2.2.4], dC is strictly
differentiable at x: ]

Lemma 2.2. Let C be a nonempty closed subset in a normed linear space X

and x 2 X =C with %xx 2 PCðxÞ: Suppose that the norm of X is G #aateaux

differentiable at x � %xx: Then the following are equivalent:

(i) dC is G #aateaux differentiable at x.

(ii) d�
C ðx;x � %xxÞ ¼ dCðxÞ:

(iii) DdCðx; x � %xxÞ ¼ dCðxÞ:

Proof. ðiÞ ) ðiiÞ Suppose that the G#aateaux derivative d 0
CðxÞ exists.

Then, by Burke et al. [11, Proposition 13] or Balaganskii [3, Theorem B],
we have

d�
C ðx; x � %xxÞ ¼ hd 0

CðxÞ; x � %xxi ¼ �hd 0
CðxÞ; %xx � xi ¼ �d 0

Cðx; %xx � xÞ ¼ dCðxÞ:

Next we prove the implication ðiiÞ ) ðiiiÞ: Let d�
C ðx; x � %xxÞ ¼ dCðxÞ:

Using [11, Proposition 13] again, we have d 0
Cðx; %xx � xÞ ¼ �dCðxÞ; so it

suffices to show d 0
Cðx; x � %xxÞ ¼ dCðxÞ: Now for any t > 0 there holds

dCðx þ tðx � %xxÞÞ � dCðxÞ4tjjx � %xxjj ¼ tdCðxÞ

from which it follows that dþ
C ðx; x � %xxÞ4dCðxÞ: This together with

d�
C ðx; x � %xxÞ ¼ dCðxÞ

implies that d 0
Cðx; x � %xxÞ exists and equals dCðxÞ: Thus (iii) holds.

Finally the implication ðiiiÞ ) ðiÞ follows from [5, Corollary 2]. ]
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We are now in position to characterize a convex Chebyshev set in terms of
various derivatives in nonsmooth analysis.

Theorem 2.3. Let C be a Chebyshev set in a Banach space X with rotund

dual X n: Then the following are equivalent:

(A1) C is convex.

(A2) dC is convex.

(B1) dC is regular on X =C:

(B2) dC is strictly differentiable on X =C:

(B3) dC8ðx; %xx � xÞ ¼ �dCðxÞ holds for each x 2 X =C and %xx 2 PCðxÞ:
(B4) @dCðxÞ ¼ @jjx � %xxjj holds for each x 2 X =C and %xx 2 PCðxÞ:
(C1) dC is G #aateaux differentiable on X =C:

(C2) d�
C ðx; x � %xxÞ ¼ dCðxÞ holds for each x 2 X =C and %xx 2 PCðxÞ:

(C3) DdCðx; x � %xxÞ ¼ dCðxÞ holds for each x 2 X =C and %xx 2 PCðxÞ:
(D1) DdCðx; vÞ ¼ 1 holds for each x 2 X =C and some v 2 X with jjvjj ¼ 1:

(D2) DþdCðxÞ ¼ 1 holds for each x 2 X =C:

Proof. The equivalence ðA1Þ , ðA2Þ is obvious. Since the norm of Xn is
rotund, X is smooth [16, Theorem 2, p. 23]. Thus the equivalences ðB1Þ ,
ðB2Þ , ðB3Þ , ðB4Þ follow from Lemma 2.1 and [11, Theorem 16]. In
addition, the equivalences ðC1Þ , ðC2Þ , ðC3Þ and the implication ðD2Þ
) ðA1Þ are consequences of Lemma 2.2 and Theorem 1.1, respectively. It
suffices to show the implications ðA2Þ ) ðB1Þ; ðB2Þ ) ðC1Þ and ðC3Þ )
ðD1Þ ) ðD2Þ: But we note that the implication ðB2Þ ) ðC1Þ is from the
definitions of strict and G#aateaux derivatives and that the implication ðC3Þ
) ðD1Þ is immediate by taking v ¼ ðx � %xxÞ=jjx � %xxjj: It remains to prove the
implications ðA2Þ ) ðB1Þ and ðD1Þ ) ðD2Þ:

Now if (A2) holds, then, by Clarke [13, Proposition 2.3.6], dC is regular at
each point in X : Thus (B1) follows.

The implication ðD1Þ ) ðD2Þ is in fact immediate since for each v 2 X

with jjvjj ¼ 1 we have DdCðx; vÞ4DþdCðxÞ41: ]

A norm on X is said to be Kadec if each weakly convergent sequence xn in
X with the weak limit x 2 X converges in norm to x whenever jjxnjj ! jjxjj:
Note that for a Chebyshev set C in a normed linear space X the
metric projection PC is continuous on X =C if and only if it is continuous
on X which implies that d 0

Cðx; x � %xxÞ ¼ dCðxÞ for each x 2 X =C and
%xx 2 PCðxÞ (see [20, Corollary, p. 238]). In a reflexive Banach space X

with smooth and Kadec norm, it is easy to verify that if a Chebyshev set C

of X is weakly closed, then PC is continuous on X =C: Hence it must be
convex.
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Theorem 2.4. Let C be a Chebyshev set in a reflexive Banach space X

with smooth and Kadec norm. Then the statements in Theorem 2.3 are

equivalent to each of the following:

(E1) C is weakly closed.

(E2) PC is continuous at each x 2 X =C:

Proof. Recall that a reflexive Banach space X is smooth if and only if Xn

is rotund (see [16, Corollary 1, p. 24]). Thus in a reflexive Banach space X

with smooth and Kadec norm the statements in Theorem 2.3 are equivalent.
As we explained above, statement (A1) in Theorem 2.3 follows from
statement ðE2Þ:

Since a convex closed subset in a locally convex space is weakly closed
(see [14, Corollary 1.5, p. 126]) and a Chebyshev set is always closed,
a convex Chebyshev set must be weakly closed, that is, statement (A1)
in Theorem 2.3 implies statement (E1). Hence it remains to show the
implication ðE1Þ ) ðE2Þ:

We suppose that C is weakly closed. For any x 2 X =C and %xx 2 PCðxÞ;
consider any sequence fxng with %xxn 2 PCðxnÞ and xn ! x as n ! þ1:
Note that dC is Lipschitz continuous and %xxn 2 C: We have

jjx � %xxjj4jj %xxn � xjj4jjxn � %xxnjj þ jjxn � xjj ¼ dCðxnÞ þ jjxn � xjj ! dCðxÞ:

This means that limn!þ1 jj %xxn � xjj ¼ jjx � %xxjj and hence f %xxng is bounded.
Thus f %xxng is contained in an intersection set A of the weakly closed set C

and a boundedly convex closed set and the set A is weakly closed. Since
X is reflexive, by Conway [14, Theorem 4.2, p. 132], the ball
B ¼ fx 2 X : jjxjj41g is weakly compact. Thus the set A is weakly compact.
Hence there exists a weakly convergent subsequence f %xxnk

g of f %xxng whose
weak limit %xx0 lies in A: Such an %xx0 must be in C: Note that the norm on a
normed space is lower semicontinuous for the weak topology [14, p. 128].
Then

jjx � %xx0jj4 lim inf
k!þ1

jjx � %xxnk
jj ¼ dCðxÞ ¼ jjx � %xxjj:

This implies %xx0 ¼ %xx since PCðxÞ is a singleton. And hence x � %xxnk
weakly

converges to x � %xx and satisfies limk!þ1 jjx � %xxnk
jj ¼ jjx � %xxjj: Since

the norm on X is Kadec, the sequence x � %xxnk
is normly convergent to

x � %xx: Therefore, %xxnk
converges to %xx in norm. This property means that

every subsequence of f %xxng normly converges to %xx: So %xxn converges to
%xx in norm. This proves that PC is continuous at x since xn ! x is
arbitrary. ]
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When the norms on Banach spaces X and Xn are Fr!eechet differentiable,
Theorem 2.3 can be enriched with the following statements:

Theorem 2.5. Let the norms on Banach spaces X and Xn be Fr!eechet

differentiable and C be a Chebyshev set of X. Then the statements in Theorem

2.3 are equivalent to each of the following:

(E1) PC is continuous at each x 2 X =C:

(E2) Every minimizing sequence in C for each x 2 X =C converges.

(E3) dC is Fr!eechet differentiable on X =C:

If the norm of X is also Kadec, then the above statements are equivalent to

each of the following:
(E4) For each x 2 X =C there exists %xx 2 C such that every minimizing

sequence fxig in C for x weakly converges to %xx:

(E5) C is weakly closed.

Proof. Since the norm of Xn is Fr!eechet differentiable, the space
X is reflexive ([16, Corollary 1, p. 34]). Note that the norm of X is
smooth since it is Fr!eechet differentiable. Thus, by Diestel [16, Corollary 1,
p. 24], Xn is rotund. Therefore for the present case the statements in
Theorem 2.3 are equivalent and we only need to show the implications
(D1) in Theorem 2.3 ) ðE1Þ; ðE1Þ ) ðE2Þ ) ðE3Þ; and ðE3Þ ) ðC1Þ
in Theorem 2.3. But they easily follow from [19, Corollary 3.4; 18,
Corollary 3.5], and the definitions of the Fr!eechet and G#aateaux derivatives,
respectively.

Next if the norm of X is also Kadec, then by Theorem 2.4 the equivalence
ðE1Þ , ðE5Þ holds. It remains to show the equivalence ðE2Þ , ðE4Þ: For
each x 2 X =C we suppose (E2) holds, that is, all minimizing sequences in C

for x are convergent. Then such sequences must converge to the same point
in C which is denoted by %xx: Thus (E4) holds since a normly convergent
sequence must be weakly convergent.

Conversely, suppose that for each x 2 X =C there exists %xx 2 C such that
every minimizing sequence fxig in C for x weakly converges to %xx: To prove
the implication ðE4Þ ) ðE2Þ; it suffices to show xi � x converges to %xx � x in
norm. Since the norm of X is Kadec and the sequence fxi � xg weakly
converges to %xx � x; we only need to verify limi!þ1 jjxi � xjj ¼ jj %xx � xjj:
Note that the norm is lower semicontinuous for the weak topology
[14, p. 128] and %xx 2 C: We have

dCðxÞ4jj %xx � xjj4 lim inf
i!þ1

jjxi � xjj ¼ lim
i!þ1

jjxi � xjj ¼ dCðxÞ:

This proves limi!þ1 jjxi � xjj ¼ jj %xx � xjj and hence completes the proof. ]
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3. EQUIVALENT CONDITIONS WITH SUBDIFFERENTIALS OF dC

We recall that a norm jj � jj on X is said to be uniformly G #aateaux

differentiable if for each nonzero point x 2 X there exists x 2 Xn such that

lim
t#0

jjx þ tvjj � jjxjj
t

¼ hx; vi 8v 2 X ;

and for each v 2 X the convergence is uniform for all x with jjxjj ¼ 1: For a
nonempty closed subset C in a normed linear space X with uniformly
G#aateaux differentiable norm, Borwein, Fitzpatrick and Giles proved that
�dC is regular at each x 2 X =C (see [5, Theorem 8]). From this it follows
that the G#aateaux differentiability of dC at x 2 X =C is equivalent to the
nonemptiness of @�dCðxÞ:

Lemma 3.1. Let X be a normed linear space with uniformly G #aateaux

differentiable norm and C be a nonempty closed subset in X. Then for any

x 2 X =C the distance function dC is G #aateaux differentiable at x if and only if

@�dCðxÞ is nonempty.

Proof. The necessity is obvious. To show the sufficiency we suppose that
@�dCðxÞ is nonempty for x 2 X =C: By Borwein et al. [5, Theorem 8], �dC is
regular at x; so ð�dCÞ�ðx; vÞ ¼ ð�dCÞ8ðx; vÞ 8v 2 X : This implies that
ð�dCÞ�ðx; �Þ is sublinear. And hence by the Hahn–Banach Theorem
@�ð�dCÞðxÞ is nonempty. Moreover, by definition we have

ð�dCÞ�ðx; vÞ þ d�
C ðx; vÞ40 8v 2 X ;

so

@�ð�dCÞðxÞ þ @�dCðxÞDf0g;

which together with the nonemptiness of @�ð�dCÞðxÞ and @�dCðxÞ implies
that dC is G#aateaux differentiable at x: ]

Using Theorem 2.3 and Lemma 3.1, we characterize a convex Chebyshev
set in terms of the G#aateaux subdifferential as follows.

Theorem 3.2. Let the norm on a Banach space X be uniformly G #aateaux

differentiable and the norm of X n be rotund. Then a Chebyshev set C in X is

convex if and only if @�dCðxÞ is nonempty for each x 2 X =C:
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Remark 3.3. From the proof of Lemma 3.1, the condition that the norm
of X be uniformly G#aateaux differentiable in Theorem 3.2 can be replaced
with �dC being regular on X =C:

Note that @F dCðxÞD@�dCðxÞ for each x 2 X : Under the condition of X

and Xn in Theorem 3.2, the nonemptiness of @F dCðxÞ for each x 2 X =C is
sufficient for a Chebyshev set C to be convex. This is also necessary when X

is the same as in Theorem 2.5 and the norm of X is in addition uniformly
G#aateaux differentiable or Kadec.

Theorem 3.4. Suppose that the norms on X and Xn are Fr!eechet

differentiable and the norm of X is also uniformly G #aateaux differentiable.

Then a Chebyshev set C in X is convex if and only if @F dCðxÞ is nonempty for

each x 2 X =C:

Proof. If C is convex, then, by Theorem 2.5, dC is Fr!eechet differentiable
at each x 2 X =C: Thus @F dCðxÞ is nonempty for each x 2 X =C:

Conversely, if @F dCðxÞ is nonempty for each x 2 X =C; then @�dCðxÞ is
nonempty for each x 2 X =C: By Lemma 3.1 and Theorem 2.3, C is
convex. ]

For a nonempty closed set C in a reflexive Banach space X with Fr!eechet
differentiable and Kadec norm, Borwein and Giles proved that if @F dCðxÞ is
nonempty for x 2 X =C; then dC is Fr!eechet differentiable at x (see [6, Lemma
6]). Consequently we obtain the following result.

Theorem 3.5. Suppose that the norms on X and Xn are Fr!eechet

differentiable and the norm of X is also Kadec. Then a Chebyshev set C in

X is convex if and only if @F dCðxÞ is nonempty for each x 2 X =C:

Proof. This follows from Theorem 2.5 and [6, Lemma 6] since X is
reflexive as stated in the proof of Theorem 2.5. ]

Remark 3.6. According to Theorems 2.3, 3.2, 3.4 and 3.5, in a Hilbert
space X ; a Chebyshev set C is convex if and only if @�dCðxÞ ¼ f x� %xx

jjx� %xxjjg for
each x 2 X =C and %xx 2 PCðxÞ if and only if @F dCðxÞ ¼ f x� %xx

jjx� %xxjjg for each
x 2 X =C and %xx 2 PCðxÞ if and only if the G#aateaux derivative of dC exists
and equals x� %xx

jjx� %xxjj for each x 2 X =C and %xx 2 PCðxÞ: In a finite-dimensional
Hilbert space this statement is equivalent to those in the following result
recently obtained by Wu [30], but in an infinite-dimensional Hilbert space
we do not know if the equivalence is still true.
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Theorem 3.7. (Wu [30, Theorem 3.2]). Let C be a nonempty closed

subset in a Hilbert space X. Then the following are equivalent:

(i) C is a Chebyshev set.

(ii) For each x 2 X =C there exists a unique x 2 X with jjxjj ¼ 1 such that

@PdCðx þ ðt � 1ÞdCðxÞxÞ ¼ fxg 8t 2 ð0; 1Þ:

(iii) For each x 2 X =C there exists a unique x 2 X with jjxjj ¼ 1 such that

@F dCðx þ ðt � 1ÞdCðxÞxÞ ¼ fxg 8t 2 ð0; 1Þ:

(iv) For each x 2 X =C there exists a unique x 2 X with jjxjj ¼ 1 such

that the Fr!eechet derivative of dC exists and equals x at x þ ðt � 1ÞdCðxÞx for

all t 2 ð0; 1Þ:
(v) For each x 2 X =C there exists a unique x 2 X with jjxjj ¼ 1 such that

@�dCðx þ ðt � 1ÞdCðxÞxÞ ¼ fxg 8t 2 ð0; 1Þ:

(vi) For each x 2 X =C there exists a unique x 2 X with jjxjj ¼ 1 such

that the G #aateaux derivative of dC exists and equals x at x þ ðt � 1ÞdCðxÞx for

all t 2 ð0; 1Þ:
(vii) For each x 2 X =C there exists a unique x 2 X with jjxjj ¼ 1 such

that the strict derivative of dC exists and equals x at x þ ðt � 1ÞdCðxÞx for all

t 2 ð0; 1Þ:
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